Search results

1 – 10 of 17
Article
Publication date: 22 December 2022

Ruifeng Wang, Martin Dresner and Xiaodan Pan

The study focuses on (1) the success of three strategies employed during the pandemic – two “persevering” strategies, curbside pickup and return window extension and one…

Abstract

Purpose

The study focuses on (1) the success of three strategies employed during the pandemic – two “persevering” strategies, curbside pickup and return window extension and one innovative strategy, virtual try-on technology and (2) whether the strategies are likely to be successful in the post-pandemic world.

Design/methodology/approach

The authors utilize a panel dataset containing 17 department store chains in the US The panel includes weekly sales by the retailers at the city level from 2018 to 2021, encompassing both a pre-COVID-19 period and a period during the pandemic. A two-way fixed effects model, including retailer-city fixed effects and year-week fixed effects, is used to estimate department store sales.

Findings

The authors find that the two persevering strategies offset the negative impact of government-imposed containment and health measures on sales performance. On the other hand, the innovative strategy is more effective with a low level of containment and health measures, leading to our observation that virtual try-on may be more sustainable than the other two strategies in a post-pandemic environment.

Originality/value

This paper makes the following contributions: First, the authors contribute to the literature on strategies that may be used to respond to crises. Second, the authors contribute to the retail management literature, assessing the impact of the three retail strategies on department store sales. Finally, the authors compare the impact on sales of the two persevering strategies to the innovative strategy and conclude that a mix of these types of strategies may be most effective at generating short-term sales during a crisis and longer-term sales post crisis.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 2
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 9 April 2021

Jinlei Zhuang, Ruifeng Li, Chuqing Cao, Yunfeng Gao, Ke Wang and Feiyang Wang

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters…

Abstract

Purpose

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy.

Design/methodology/approach

A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method.

Findings

Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively.

Originality/value

A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 April 2016

Fei Yan, Ke Wang, Jizhong Xiao and Ruifeng Li

The most prominent example of scan matching algorithm is the Iterative Closest Point (ICP) algorithm. But the ICP algorithm and its variants excessively depend on the initial pose…

Abstract

Purpose

The most prominent example of scan matching algorithm is the Iterative Closest Point (ICP) algorithm. But the ICP algorithm and its variants excessively depend on the initial pose estimate between two scans. The purpose of this paper is to propose a scan matching algorithm, which is adaptable to big initial pose errors.

Design/methodology/approach

The environments are represented by flat units and upright units. The upright units are clustered to represent objects that the robot cannot cross over. The object cluster is further discretized to generate layered model consisting of cross-section ellipses. The layered model provides simplified features that facilitate an object recognition algorithm to discriminate among common objects in outdoor environments. A layered model graph is constructed with the recognized objects as nodes. Based on the similarity of sub-graphs in each scans, the layered model graph-based matching algorithm generates initial pose estimates and uses ICP to refine the scan matching results.

Findings

Experimental results indicate that the proposed algorithm can deal with bad initial pose estimates and increase the processing speed. Its computation time is short enough for real-time implementation in robotic applications in outdoor environments.

Originality/value

This paper proposes a bio-inspired scan matching algorithm for mobile robots based on layered model graph in outdoor environments.

Details

Assembly Automation, vol. 36 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1051

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 May 2020

Feifei Bian, Danmei Ren, Ruifeng Li, Peidong Liang, Ke Wang and Lijun Zhao

The purpose of this paper is to enable robots to intelligently adapt their damping characteristics and motions in a reactive fashion toward human inputs and task requirements…

Abstract

Purpose

The purpose of this paper is to enable robots to intelligently adapt their damping characteristics and motions in a reactive fashion toward human inputs and task requirements during physical human–robot interaction.

Design/methodology/approach

This paper exploits a combination of the dynamical system and the admittance model to create robot behaviors. The reference trajectories are generated by dynamical systems while the admittance control enables robots to compliantly follow the reference trajectories. To determine how control is divided between the two models, a collaborative arbitration algorithm is presented to change their contributions to the robot motion based on the contact forces. In addition, the authors investigate to model the robot’s impedance characteristics as a function of the task requirements and build a novel artificial damping field (ADF) to represent the virtual damping at arbitrary robot states.

Findings

The authors evaluate their methods through experiments on an UR10 robot. The result shows promising performances for the robot to achieve complex tasks in collaboration with human partners.

Originality/value

The proposed method extends the dynamical system approach with an admittance control law to allow a robot motion being adjusted in real time. Besides, the authors propose a novel ADF method to model the robot’s impedance characteristics as a function of the task requirements.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2019

Feifei Bian, Danmei Ren, Ruifeng Li, Peidong Liang, Ke Wang and Lijun Zhao

The purpose of this paper is to present a method which enables a robot to learn both motion skills and stiffness profiles from humans through kinesthetic human-robot cooperation.

Abstract

Purpose

The purpose of this paper is to present a method which enables a robot to learn both motion skills and stiffness profiles from humans through kinesthetic human-robot cooperation.

Design Methodology Approach

Admittance control is applied to allow robot-compliant behaviors when following the reference trajectories. By extending the dynamical movement primitives (DMP) model, a new concept of DMP and stiffness primitives is introduced to encode a kinesthetic demonstration as a combination of trajectories and stiffness profiles, which are subsequently transferred to the robot. Electromyographic signals are extracted from a human’s upper limbs to obtain target stiffness profiles. By monitoring vibrations of the end-effector velocities, a stability observer is developed. The virtual damping coefficient of admittance controller is adjusted accordingly to eliminate the vibrations.

Findings

The performance of the proposed methods is evaluated experimentally. The result shows that the robot can perform tasks in a variable stiffness mode as like the human dose in the teaching phase.

Originality Value

DMP has been widely used as a teaching by demonstration method to represent movements of humans and robots. The proposed method extends the DMP framework to allow a robot to learn not only motion skills but also stiffness profiles. Additionally, the authors proposed a stability observer to eliminate vibrations when the robot is disturbed by environment.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 26 August 2022

Ruifeng Hu, Weiqiao Xu and Yalin Yang

Owing to increased energy demands, China has become the world’s top CO2 emitter, with electricity generation accounting for the majority of emissions. Therefore, the Chinese…

Abstract

Purpose

Owing to increased energy demands, China has become the world’s top CO2 emitter, with electricity generation accounting for the majority of emissions. Therefore, the Chinese Government aspires to achieve a low-carbon transformation of the electric industry by enhancing its green innovation capacity. However, little attention has been paid to the green development of electric technology. Thus, this paper aims to uncover the spatiotemporal evolution of electric technology in the context of China’s low-carbon transformation through patent analysis.

Design/methodology/approach

Using granted green invention patent data for China’s electric industry between 2000 and 2021, this paper conducted an exploratory, spatial autocorrelation and time-varying difference-in-differences (DID) analysis to reveal the landscape of electric technology.

Findings

Exploratory analysis shows that the average growth rate of electric technology is 8.1%, with spatial heterogeneity, as there is slower growth in the north and west and faster growth in the south and east. In addition, electric technology shows spatial clustering in local areas. Finally, the time-varying DID analysis provides positive evidence that low-carbon policies improve the green innovation capacity of electric technology.

Research limitations/implications

The different effects of the low-carbon pilot policy (LCPC) on R&D subjects and the LCPC’s effectiveness in enhancing the value of patented technology were not revealed.

Originality/value

This paper reveals the spatiotemporal evolutionary characteristics of electric technology in mainland China. The results can help the Chinese Government clarify how to carry out innovative development in the electric industry as part of the low-carbon transformation and provide a theoretical basis and research direction for newcomers in this field.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 8 September 2023

Weiqiao Xu and Ruifeng Hu

The academic experience of top management team (TMT) has a positive impact on firms' innovation performance. However, existing studies predominantly focus on the educational…

Abstract

Purpose

The academic experience of top management team (TMT) has a positive impact on firms' innovation performance. However, existing studies predominantly focus on the educational qualifications and institutional prestige of TMT, failing to comprehensively evaluate whether TMT possess genuine academic experience and the role of academic competence. This article aims to examine whether TMT academic competence has a potential influence on firm innovation performance and to understand the mechanisms behind this relationship.

Design/methodology/approach

Using firm-level metrics of Chinese listed firms and TMT scholarly publication data spanning 2000–2021, this paper investigates whether TMT academic competence can promote firms' innovation performance and conducts a moderated mediating effect analysis.

Findings

(1) Academic competence of TMT can contribute positively to firms’ innovation performance; (2) university–industry collaboration partially mediates this relationship; (3) the mediating effect is enhanced by cognitive proximity and (4) distance proximity does not diminish the mediating effect.

Research limitations/implications

Outcome of this study can assist academia in further understanding the impacts of TMT on firm innovation and aid government in promoting university–industry collaboration. Simultaneously, it can help firms adjust their TMT selection and training strategies to enhance innovation performance.

Originality/value

This article, as the first to construct an index of academic competence and to explore whether it has an impact on firms' innovation performance and its inherent mechanism, can provide a new research perspective for the study of the impact of TMT's characteristics on firms' innovation.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 14 September 2023

Ruifeng Li and Wei Wu

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This…

102

Abstract

Purpose

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This paper aims to propose a collision-free following system for robot to track humans in corridors without a prior map.

Design/methodology/approach

In addition to following a target and avoiding collisions robustly, the proposed system calculates the positions of walls in the environment in real-time. This allows the system to maintain a stable tracking of the target even if it is obscured after turning. The proposed solution is integrated into a four-wheeled differential drive mobile robot to follow a target in a corridor environment in real-world.

Findings

The experimental results demonstrate that the robot equipped with the proposed system is capable of avoiding obstacles and following a human target robustly in the corridors. Moreover, the robot achieves a 90% success rate in maintaining a stable tracking of the target after the target turns around a corner with high speed.

Originality/value

This paper proposes a human target following system incorporating three novel features: a path planning method based on wall positions is introduced to ensure stable tracking of the target even when it is obscured due to target turns; improvements are made to the random sample consensus (RANSAC) algorithm, enhancing its accuracy in calculating wall positions. The system is integrated into a four-wheeled differential drive mobile robot effectively demonstrates its remarkable robustness and real-time performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 11 August 2022

Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…

Abstract

Purpose

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.

Design/methodology/approach

To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.

Findings

The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.

Originality/value

This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

1 – 10 of 17